Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
The way scientists work in traditional sciences has changed dramatically in recent years. Computer science is increasingly supporting them in performing and analyzing their experiments. Today, obtaining the raw data from instruments is merely the first step. No longer is the data analyzed on paper or with simple computational tools. Instead, massive amounts of data obtained raw from instruments are processed in complex and long-running computational pipelines. This trend of supporting traditional sciences with computational tools has lead to a significant speedup in executing experiments and has also enabled experiments which would not have been possible before. Scientists increasingly depend on adequate infrastructure to process experiment data using computational pipelines and to manage the plethora of data used and produced by them. Such computational pipelines are typically modeled as workflows and so this trend consequently challenges the current infrastructure for executing workflows as well as the infrastructure to manage the resulting data deluge. This book addresses challenges arising from this trend in the areas of scientific workflow execution and data management.