Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Après une présentation des outils mathématiques, nous développons dans ce livre deux applications importantes : la mécanique analytique et la relativité générale, qui, toutes deux, utilisent les concepts de la géométrie riemannienne. Partant de connaissances élémentaires, l’ouvrage propose un parcours singulier autour des variétés différentielles et des espaces fibrés, en privilégiant les applications et en négligeant volontairement les démonstrations trop techniques. Il ouvre de vastes perspectives, et introduit des méthodes comme celles de l’algèbre homologique ou de la théorie de l’indice, qui ont été au cœur des résultats les plus récents. La géométrie différentielle et la topologie sont devenues des outils indispensables dans de nombreux domaines de la physique théorique, intéressant aussi bien la physique de la matière condensée, que la gravité ou la physique des particules. Après une présentation des outils mathématiques, nous développons dans ce livre deux applications importantes : la mécanique analytique et la relativité générale, qui, toutes deux, utilisent les concepts de la géométrie riemannienne. Partant de connaissances élémentaires, l’ouvrage propose un parcours singulier autour des variétés différentielles et des espaces fibrés, en privilégiant les applications et en négligeant volontairement les démonstrations trop techniques. Il ouvre de vastes perspectives, et introduit des méthodes comme celles de l’algèbre homologique ou de la théorie de l’indice, qui ont été au cœur des résultats les plus récents. Il s’appuie sur la longue expérience d’enseignement de l’auteur auprès d’étudiants en master et de futurs ingénieurs ou physiciens. C’est à eux que l’ouvrage s’adresse en priorité, ainsi qu’à tous ceux qui cherchent un formalisme puissant pour comprendre la physique contemporaine. Des éléments bibliographiques complètent l’ouvrage laissant au lecteur le loisir d’approfondir quelques-uns des plus beaux thèmes de ce vaste territoire, qui est au cœur des préoccupations scientifiques d’aujourd’hui.