Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
In 1908, H. Wely published the well known Hilbert s inequality. In 1925, G. H. Hardy gave an extension of it by introducing one pair of conjugate exponents. The Hilbert-type inequalities are a more wide class of analysis inequalities which are including Hardy-Hilbert s inequality as the particular case. By making a great effort of mathematicians at about one hundred years, the theory of Hilbert-type integral and discrete inequalities has now come into being. This book is a monograph about the theory of multiple half-discrete Hilbert-type inequalities. Using the methods of Real Analysis, Functional Analysis and Operator Theory, the author introduces a few independent parameters to establish two kinds of multiple half-discrete Hilbert-type inequalities with the best possible constant factors. The equivalent forms and the reverses are also considered. As applications, the author also considers some double cases of multiple half-discrete Hilbert-type inequalities and a large number of examples. For reading and understanding this book, readers should hold the basic knowledge of Real analysis and Functional analysis.