Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
This book presents a theory of formal languages with main emphasis on rational transductions and their use for the classification of context-free lan- guages. The Ievel of presentation corresponds to that of beginning graduate or advanced undergraduate work. Prerequisites for this book are covered by a "standard" first-semester coursein formallanguages and automata theory: e.g. a knowledge of Chapters 1-3 of Ginsburg [1966], or Chapters 3-4 of Hopcroft and Ullman [1971], or Chapter 2 of Salomaa [1973], or Chap- ters 2 and 4 of Becker and Walter [1977] would suffice. The book is self-contained in the sense that complete proofs are given for all theorems stated, except for some basic results explicitly summarized at the beginning of the text. Chapter IV and Chapters V-VIII are independent from each other. The subject matter is divided into two preliminary and six main chapters. The initial two chapters contain a general survey of the "classical" theory of regular and context-free languages with a detailed description of several special languages. Chapter III deals with the general theory of rational transductions, treated in an algebraic fashion along the lines of Eilenberg, and which will be used systematically in subsequent chapters. Chapter N is concerned with the important special case of rational functions, and gives a full treatment of the latest developments, including subsequential transductions, unambiguous trans- ducers and decision problems.