Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
This book includes the lectures given during the third session of the School of Statistics for Astrophysics that took place at Autrans, near Grenoble, in France, in October 2017. The subject is Bayesian Methodology.
The interest of this statistical approach in astrophysics probably comes from its necessity and its success in determining the cosmological parameters from observations, especially from the cosmic background luctuations. The cosmological community has thus been very active in this field for many years. But the Bayesian methodology, complementary to the more classical frequentist one, has many applications in physics in general due to its ability to incorporate a priori knowledge into inference, such as uncertainty brought by the observational processes. The Bayesian approach becomes more and more widespread in the astrophysical literature.
This book contains statistics courses on basic to advanced methods with practical exercises using the R environment, by leading experts in their field. This covers the foundations of Bayesian inference, Markov chain Monte Carlo technique, model building, Approximate Bayesian Computation (ABC) and Bayesian nonparametric inference and clustering.