Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Rapid urban development s often witness deterioration of regional water quality. As part of the management process, it is important to assess the baseline characteristics of the river environment so that sustainable development can be pursued. The aim of this research is to develop a water quality prediction model in Johor River at two different stream flow level (main stream and tributary). Several modeling methods have been applied in this research including; Linear Regression Model (LRM), Multi Layer Perceptron (MLP) Neural Network and Radial Basis Function (RBF) Neural Network. In this study, the water quality parameters of interests are total dissolved solids, electrical conductivity and turbidity due to their importance when studying the water quality status of any rivers. Five years data for these three parameters have been obtained from Department of Environment (DOE). A comprehensive comparison analysis for the above modeling methods outputs have been carried out and discussed in order to achieve the appropriate model method and architecture for the current study.