Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
The aim of this short book is to present the elements of a systematic theory of certain types of finitely additive probability measures on a set of positive integers. The conventional name of this measures is «density» with an adjective. Every set of positive integers is finite or infinite countable. It is, thus, impossible to consider a sigma additive probability measure defined on a certain class of the sets of positive integers, which could distinguish between the finite and infinite sets of positive integers. The greatness of the first is negligible. From the point of view of cardinality, the second has the same greatness. If we want to consider the measure of greatness, which could divide the sets of positive integers from a certain aspect of their structure, it is more convenient to consider the finitely additive measure. We shall study four most known types of these set functions. One of the important rules in the set of positive integers is played by the relation to divisibility, thus our main attention is devoted to the connection between density and this relation. We try to derive some known results from the basic definitions.