Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Why do we count the way we do? What is a prime number or a friendly, perfect, or weird one? How many are there and who has found the largest yet known? What is the Baffling Law of Benford and can you really believe it? Do most numbers you meet in every day life really begin with a 1, 2, or 3? What is so special about 6174? Can cubes, as well as squares, be magic? What secrets lie hidden in decimals? How do we count the infinite, and is one infinity really larger than another? These and many other fascinating questions about the familiar 1, 2, and 3 are collected in this adventure into the world of numbers. Both entertaining and informative, A Number for Your Thoughts: Facts and Speculations about Numbers from Euclid to the Latest Computers contains a collection of the most interesting facts and speculations about numbers from the time of Euclid to the most recent computer research. Requiring little or no prior knowledge of mathematics, the book takes the reader from the origins of counting to number problems that have baffled the world's greatest experts for centuries, and from the simplest notions of elementary number properties all the way to counting the infinite.