Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
This volume reports the results of a symposium held in Heidelberg during the International Sedimentological Congress in late August and early September, 1971. The symposium, co- sponsored by the International Association for Mathematical Geology, entertained the subject, "Mathematical Models of Sedimentary Processes. " The subject is most appropriate because sedimentologists have long been concerned with processes and mechanisms of sedi- ment dispersal. Much effort has gone into building physical models such as flumes, stream tables, wave tanks, wind tunnels, etc., to help understand sedimentological processes. Quantita- tive methods (especially statistics) have been utilized in summarizing these data. It is timely then with the recent developments of simulation and application of computer tech- niques that a symposium be addressed to the use of "Mathematical Models of Sedimentary Processes" involving some of these new statistically oriented methods and available data bases. Experimentation in geology has been hampered by a scale factor. That is, it is difficult to find suitab. 1e materials for physical models; it is difficult to find a mechanical de- vice which properly represents the forces involved; it is almost impossible to allow adequately for geologic time. Sta- tistically valid models are difficult to obtain with physical models because of material replicate problems. Most problems including the time factor, however, can be eliminated with mathematical models. Mathematical models can be infinitely varied in any number of combinations easily and quickly with the computer.