Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Dans le domaine de la météorologie, les problématiques de prédiction sont courantes. Or, le rapport entre les paramètres climatiques est rarement linéaire. L'interaction entre les paramètres, même si elle est soupçonnée, est difficile à modéliser. L'utilisation des réseaux de neurones artificiels présente une alternative intéressante par rapport aux méthodes statistiques traditionnelles. En effet, avec les méthodes classiques, il faut d'abord penser à un modèle, le tester, penser à un autre modèle jusqu'à ce qu'on obtienne un modèle évidemment précis, par sa nature et son fonctionnement. Cependant, les réseaux de neurones artificiels peuvent détecter les interactions multiples non linéaires parmi une série de variables d'entrée. Ils peuvent donc gérer des relations complexes entre les variables indépendantes et les variables dépendantes, et tirent leur puissance de modélisation ainsi que leur capacité à capter les dépendances de haut niveau, c'est-à-dire qui impliquent plusieurs variables à la fois. Le présent travail porte sur le développement et l'élaboration des modèles de réseau de neurones artificiels de type perceptron multicouches et les réseaux à fonction de base radiale.