• Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten

Human-in-the-Loop Machine Learning E-BOOK

Active learning and annotation for human-centered AI

Robert (Munro) Monarch
E-book | Engels
€ 49,20
+ 49 punten
Uitvoering
Onmiddellijk beschikbaar
Eenvoudig bestellen
Veilig betalen
Onmiddellijk geleverd via e-mail

Omschrijving

Human-in-the-Loop Machine Learning lays out methods for humans and machines to work together effectively.

Summary
Most machine learning systems that are deployed in the world today learn from human feedback. However, most machine learning courses focus almost exclusively on the algorithms, not the human-computer interaction part of the systems. This can leave a big knowledge gap for data scientists working in real-world machine learning, where data scientists spend more time on data management than on building algorithms. Human-in-the-Loop Machine Learning is a practical guide to optimizing the entire machine learning process, including techniques for annotation, active learning, transfer learning, and using machine learning to optimize every step of the process.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Machine learning applications perform better with human feedback. Keeping the right people in the loop improves the accuracy of models, reduces errors in data, lowers costs, and helps you ship models faster.

About the book
Human-in-the-Loop Machine Learning lays out methods for humans and machines to work together effectively. You’ll find best practices on selecting sample data for human feedback, quality control for human annotations, and designing annotation interfaces. You’ll learn to create training data for labeling, object detection, and semantic segmentation, sequence labeling, and more. The book starts with the basics and progresses to advanced techniques like transfer learning and self-supervision within annotation workflows.

What's inside

    Identifying the right training and evaluation data
    Finding and managing people to annotate data
    Selecting annotation quality control strategies
    Designing interfaces to improve accuracy and efficiency

About the author
Robert (Munro) Monarch is a data scientist and engineer who has built machine learning data for companies such as Apple, Amazon, Google, and IBM. He holds a PhD from Stanford.

Robert holds a PhD from Stanford focused on Human-in-the-Loop machine learning for healthcare and disaster response, and is a disaster response professional in addition to being a machine learning professional. A worked example throughout this text is classifying disaster-related messages from real disasters that Robert has helped respond to in the past.

Table of Contents

PART 1 - FIRST STEPS
1 Introduction to human-in-the-loop machine learning
2 Getting started with human-in-the-loop machine learning
PART 2 - ACTIVE LEARNING
3 Uncertainty sampling
4 Diversity sampling
5 Advanced active learning
6 Applying active learning to different machine learning tasks
PART 3 - ANNOTATION
7 Working with the people annotating your data
8 Quality control for data annotation
9 Advanced data annotation and augmentation
10 Annotation quality for different machine learning tasks
PART 4 - HUMAN–COMPUTER INTERACTION FOR MACHINE LEARNING
11 Interfaces for data annotation
12 Human-in-the-loop machine learning products

Specificaties

Betrokkenen

Auteur(s):
Uitgeverij:

Inhoud

Aantal bladzijden:
424
Taal:
Engels

Eigenschappen

Productcode (EAN):
9781638351030
Verschijningsdatum:
16/08/2021
Uitvoering:
E-book
Beveiligd met:
Adobe DRM
Formaat:
ePub
Standaard Boekhandel

Alleen bij Standaard Boekhandel

+ 49 punten op je klantenkaart van Standaard Boekhandel
E-BOOK ACTIE

Tot meer dan 50% korting

op een selectie e-books
E-BOOK ACTIE
Banner ebookactie
Standaard Boekhandel

Beoordelingen

We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.