Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
The focus of this book is on finding the unconstrained minimizer of a function. Specifically, we will focus on the Barzilai and Borwein (BB) method that is a famous two-point stepsize gradient method. Due to BB method's simplicity, low storage and numerical efficiency, the BB method has received a good deal of attention in the optimization community but despite all these advances, stepsize of BB method is computed by means of simple approximation of Hessian in the form of scalar multiple of identity and especially the BB method is not monotone, and it is not easy to generalize the method to general nonlinear functions. Due to the presence of these deficiencies, we introduce new gradient-type methods in the frame of BB method including a new gradient method via weak secant equation, improved Hessian approximation and scaling the diagonal updating. Our proposed methods consider approximation of Hessian in diagonal matrix. Incorporate with monotone strategies, the resulting algorithms belong to the class of monotone gradient methods with globally convergence. Numerical results suggest that for non-quadratic minimization problem, the new methods clearly outperform the BB method.