Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Content and Subject Matter: This research monograph deals with two main subjects, namely the notion of equimultiplicity and the algebraic study of various graded rings in relation to blowing ups. Both subjects are clearly motivated by their use in resolving singularities of algebraic varieties, for which one of the main tools consists in blowing up the variety along an equimultiple subvariety. For equimultiplicity a unified and self-contained treatment of earlier results of two of the authors is given, establishing a notion of equimultiplicity for situations other than the classical ones. For blowing up, new results are presented on the connection with generalized Cohen-Macaulay rings. To keep this part self-contained too, a section on local cohomology and local duality for graded rings and modules is included with detailed proofs. Finally, in an appendix, the notion of equimultiplicity for complex analytic spaces is given a geometric interpretation and its equivalence to the algebraic notion is explained. The book is primarily addressed to specialists in the subject but the self-contained and unified presentation of numerous earlier results make it accessible to graduate students with basic knowledge in commutative algebra.