Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Professor Aaboe gives here the reader a feeling for the universality of important mathematics, putting each chosen topic into its proper setting, thus bringing out the continuity and cumulative nature of mathematical knowledge. The material he selects is mathematically elementary, yet exhibits the depth that is characteristic of truly great thought patterns in all ages. The success of this exposition is due to the author's unique approach to his subject. He wisely refrains from attempting a general survey of mathematics in antiquity, but selects, instead, a few representative items that he can treat in detail. He describes Babylonian mathematics as revealed from cuneiform texts discovered only recently, as well as more familiar topics developed by the Greeks. Although each chapter can be read as a separate unit, there are many connecting threads. Aaboe stays as close to the original texts as is comfortable for a modern reader, and the bibliography enables the interested student to delve more deeply into any aspect of ancient mathematics that catches his or her fancy.