Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Microarrays are known for their wide use in providing expression profiles for thousands of genes. Gene expression profiles provide a rich information for cancer diagnosis. Selecting an efficient classifier is a challenging task due to the presence of several classifier types. Previous studies showed that ensembles of classifiers are more efficient than single classifiers in cancer samples classification. However, designing an efficient ensemble has faced a number of challenges such as the large space of ensembles, increasing the diversity between the ensemble members, and the use of an efficient method to combine the decisions of the ensemble members. In this book, a novel ensemble selection algorithm is proposed. The proposed algorithm addresses the main challenges of the ensemble selection problem taking into consideration the special nature of microarray datasets. A set of experiments has been performed to study the robustness of ensembles of classifiers. This study shows that ensembles of classifiers are more robust than single classifiers. The study also shows that the proposed algorithm performs betten than other ensemble selection algorithms in the literature.