Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
The Ordinary Least Squares (OLS) method is often use to estimate the parameters of a linear model. Under certain assumptions, the OLS estimates are the best linear unbiased estimates. One of the important assumptions of the linear model is that the error terms are normally distributed. Unfortunately, many researchers are not aware that the performance of the OLS can be very poor when the data set for which one often makes a normal assumption, has a heavy-tailed distribution which may arise as a result of outliers. One way to deal with this problem is to use robust statistics which is less affected by the presence of outliers. Another possibility is to apply a bootstrap technique which does not rely on the normality assumption.In this book the use of bootstrap technique is emphasize. Unfortunately, many statistics practitioners are not aware of the fact that most of the classical bootstrap techniques are based on the OLS estimates which is sensitive to outliers. The problems are further complicated when the percentage of outliers in the bootstrap samples are greater than the percentage of outliers in the original sample.