Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
In this book we consider a Cauchy problem for a system of ordinary differential equations with a small parameter. The book is divided into th ree parts according to three ways of involving the small parameter in the system. In Part 1 we study the quasiregular Cauchy problem. Th at is, a problem with the singularity included in a bounded function j, which depends on time and a small parameter. This problem is a generalization of the regu- larly perturbed Cauchy problem studied by Poincare [35]. Some differential equations which are solved by the averaging method can be reduced to a quasiregular Cauchy problem. As an example, in Chapter 2 we consider the van der Pol problem. In Part 2 we study the Tikhonov problem. This is, a Cauchy problem for a system of ordinary differential equations where the coefficients by the derivatives are integer degrees of a small parameter.