Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Solid-State NMR is a branch of Nuclear Magnetic Resonance which is presently experiencing a phase of strongly increasing popularity. The most striking evidence is the large number of contributions from Solid-State Resonance atNMR meetings, approaching that ofliquid- state resonance. Important progress can be observed in three areas: Methodological developments, applications to inorganic matter, and applications to organic matter. These developments are intented to be captured in three volumes in this series, each of them being devoted to more or less one of these areas. The present volume on Solid-State NMR III is devoted mainly to organic matter. The recent developments of deuteron NMR and their applications are reviewed in the first chapter. Crosspolarization, MAS, and dynamic angle spinning are being explored for enhancement of information and sensitivity. In addition to the analysis of classical relaxation times and modern 2D spectra, detailed dynamic information becomes accessible from investigations of the relaxation time anisotropies. The second chapter examines cross-polarization in static and rotating solids under conditions of spin diffusion and thermal motion. The underlying dipole-dipole interaction is further exploited by the techniques described in the third chapter for studies of polymer-polymer miscibility. Short- range techniques are discriminated from long-range techniques based on spin diffusion. The use ofthese techniques is illustrated by a case study ofPMMAJPVF blends. The last chapter addresses novel z methods and applications of two-dimensional exchange NMR for investigations of relative molecular orientations, polymer morphology, molecular dynamics, and macroscopic molecular order.