Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
In this book, we describe in detail a numerical method to study the equilibrium and stability of a plasma confined by a strong magnetic field in toroidal geometry without two-dimensional symmetry. The principal appli- cation is to stellarators, which are currently of interest in thermonuclear fusion research. Our mathematical model is based on the partial differential equations of ideal magnetohydrodynamics. The main contribution is a computer code named BETA that is listed in the final chapter. This work is the natural continuation of an investigation that was presented in an early volume of the Springer Series in Computational Physics (cf. [3]). It has been supported over a period of years by the U.S. Department of Energy under Contract DE-AC02-76ER03077 with New York University. We would like to express our gratitude to Dr. Franz Herrnegger for the assistance he has given us with the preparation of the manuscript. We are especially indebted to Connie Engle for the high quality of the final typescript. New York F. BAUER October 1983 O. BETANCOURT P. GARABEDIAN Contents 1. Introduction 1 2. Synopsis of the Method 3 1. Variational principle 3 2. Coordinate system 6 3. Finite Difference Scheme 8 1. Difference equations ....................... " 8 2. Island structure ............................. 10 3. Accelerated iteration procedure .............. . . .. 12 Nonlinear Stability 15 4. 1. Second minimization . . . . . . . . . . . . . . . . .. . . 15 . . . . . 2. Test functions and convergence studies . . . . . . . .. . . 17 . 3. Comparison with exact solutions ................. 19 5. The Mercier Criterion 22 1. Local mode analysis . . . . . . . . . . . . . . . . .. . . 22 . . . . . 2. Computational method . . . . . . . . . . . . . . . .. . . 23 . . . .