Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Magnetic fluid hyperthermia (MFH) uses magnetic nanoparticles (MNP) to transform the energy of an alternating magnetic field into heat via magnetic relaxation. This enables organ-confined cancer treatment by delivering cell-damaging temperatures higher than 43°C inside tumors. However, MNP-cell interaction restricts MNP mobility and causes MNP agglomeration, severely limiting the MNP heating behavior. Based on in vitro experiments, this book addresses the applicability of MFH to pancreatic tumor cells and discusses optimizations of intracellular MNP heating for clinical application. The impact of MNP-cell interaction on heating efficiency is quantified and compared to MNP systems mimicking intracellular conditions. Besides, Monte-Carlo simulation of MNP magnetic relaxation is used to predict optimal field parameters and MNP properties to maximize MFH efficiency under medical constraints.