Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
How can we train powerful machine learning models together--across smartphones, hospitals, or financial institutions--without ever sharing raw data? This book delivers a compelling answer through the lens of federated learning (FL), a cutting-edge paradigm for decentralized, privacy-preserving machine learning. Designed for students, engineers, and researchers, this book offers a principled yet practical roadmap to building secure, scalable, and trustworthy FL systems from scratch. At the heart of this book is a unifying framework that treats FL as a network-regularized optimization problem. This elegant formulation allows readers to seamlessly address personalization, robustness, and fairness--challenges often tackled in isolation. You'll learn how to structure FL networks based on task similarity, leverage graph-based methods and apply distributed optimization techniques to implement FL systems. Detailed pseudocode, intuitive explanations, and implementation-ready algorithms ensure you not only understand the theory but can apply it in real-world systems. Topics such as privacy leakage analysis, model heterogeneity, and adversarial resilience are treated with both mathematical rigor and accessibility. Whether you're building decentralized AI for regulated industries or in settings where data, users, or system conditions change over time, this book equips you to design FL systems that are both performant and trustworthy.