Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Um Unfälle zu vermeiden, benötigen warnende Fahrerassistenzsysteme eine schritthaltende Schätzung des aktuellen Kollisionsrisikos. Hierfür wird eine Methode vorgeschlagen, die grundsätzlich auf beliebige Verkehrssituationen anwendbar ist. Erreicht wird dies durch den Einsatz von generativen Modellen zur Beschreibung des erwarteten Fahrerverhaltens. Zugehörige Probandenstudien im Realverkehr zeigen vielversprechende Ergebnisse selbst unter Berücksichtigung von Echtzeitanforderungen. To avoid accidents, warning driver assistance systems require an on-line estimation of the current risk of collision. For that, a new method is proposed that - in principle - is able to deal with arbitrary traffic situations. This is achieved by the use of generative models to describe the expected driver behavior. Corresponding user studies in real traffic show promising results even when real time constraints are taken into account.