Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
This thesis addresses the identification of defects in transmission lines, emphasizing the importance of cable network reliability in critical industries like telecommunications, automotive, and aerospace. Cable faults are classified into hard and soft faults, both of which can lead to significant safety risks and financial losses. Effective fault prediction and localization are essential.We explore methods like time-domain reflectometry (TDR) and frequency-domain reflectometry (FDR) for fault location, noting their limitations in networks with parallel branches and unknown topology, particularly regarding soft faults.The thesis introduces three innovative cable diagnosis methods:1. A cost-effective approach for detecting multiple hard faults in harnesses, using low-cost hardware that detects faults at 1 Hz, outperforming traditional reflectometry techniques.2. A distributed reflectometry method for bus-shaped networks, employing analytical modeling and an adjacency matrix to resolve reflections and locate faults accurately.3. A novel TDR algorithm for networks with unknown topology, reconstructing the topology iteratively through reflection analysis using a complex mathematical model. This method significantly enhances processing speed and accuracy.These methods address various industrial scenarios, ranging from low-risk environments to high-risk industries that require accurate soft fault location, establishing a foundation for future improvements in cable network diagnostics.