Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Energy utilities are constantly under pressure to meet the growing complicated energy demands. The traditional energy grid allows for one-way communication of energy usage between customers and utilities. This does not allow utilities to control or to suggest any changes in the consumption based on the obtained energy data. In this book, we design and implement innovative secure and reliable two-way communication between homes and the Utility. In this context, different houses communicate their energy usage, while an electric transformer relays action requests from the energy utility's headquarters. This enables the real-time tracking of energy usage by both consumers and the utility. Therefore, the efficiency of energy generation and distribution is enhanced, and consumers are empowered to make smarter decisions about their consumption. To this end, we develop and compare several machine Learning and Data Analytics models predicting energy consumption. The obtained results show that our proposed models perform better than existing ones for time-series energy forecasting.