Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Covers the Thompson sampling algorithm and its application, illustrating concepts through a range of examples, including Bernoulli bandit problems, sh...Lees meer
Reviews a branch of Monte Carlo methods that are based on the forward-backward idea, and that are referred to as backward simulators. In recent years,...Lees meer
Identifies unifying principles, patterns, and intuitions for scaling Bayesian inference. This book examines how these techniques can be scaled up to l...Lees meer
Reinforcement learning (RL) is one of the foundational pillars of artificial intelligence and machine learning. An important consideration in any opti...Lees meer
Offers an invitation to the field of matrix concentration inequalities. The book begins with some history of random matrix theory; describes a flexibl...Lees meer
Examines the topic of information processing over graphs. The presentation is largely self-contained and covers results that relate to the analysis an...Lees meer
Discusses models and methods for Bayesian inference in the simple single-step Bandit model. The book then reviews the extensive recent literature on B...Lees meer
Discusses the motivations for and principles of learning algorithms for deep architectures. By analysing and comparing recent results with different l...Lees meer
Provides a textbook like treatment of multi-armed bandits. The work on multi-armed bandits can be partitioned into a dozen or so directions. Each chap...Lees meer
Working with exponential family representations, and exploiting the conjugate duality between the cumulant function and the entropy for exponential fa...Lees meer
Surveys recent progress in using spectral methods, including matrix and tensor decomposition techniques, to learn many popular latent variable models....Lees meer
Provides a comprehensible introduction to determinantal point processes (DPPs), focusing on the intuitions, algorithms, and extensions that are most r...Lees meer
Explores different methods to design or learn valid kernel functions for multiple outputs, paying particular attention to the connection between proba...Lees meer
Provides a comprehensive tutorial aimed at application-oriented practitioners seeking to apply CRFs. The monograph does not assume previous knowledge ...Lees meer
Describes methods for automatically compressing Markov decision processes (MDPs) by learning a low-dimensional linear approximation defined by an orth...Lees meer
Principal components analysis (PCA) is a well-known technique for approximating a tabular data set by a low rank matrix. In this volume, the authors e...Lees meer
Provides a starting point for understanding deep reinforcement learning. Although written at a research level it provides a comprehensive and accessib...Lees meer
Presents the theory of submodular functions in a self-contained way from a convex analysis perspective, presenting tight links between certain polyhed...Lees meer
Variational autoencoders are powerful deep generative models widely used to represent high-dimensional complex data through a low-dimensional latent s...Lees meer
Provides an overview of online learning. The aim is to provide the reader with a sense of some of the interesting ideas and in particular to underscor...Lees meer
Argues that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale proble...Lees meer
Presents an overview of existing research in this topic, including recent progress on scaling to high-dimensional feature spaces and to data sets with...Lees meer
Many modern methods for prediction leverage nearest neighbour search to find past training examples most similar to a test example, an idea that dates...Lees meer
Provides a simple and clear description of explicit-duration modelling by categorizing the different approaches into three main groups, which differ i...Lees meer