Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
A comprehensive and cutting-edge introduction to the foundations and modern applications of learning theory. Research has exploded in the field of mac...Lees meer
A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory...Lees meer
A comprehensive review of an area of machine learning that deals with the use of unlabeled data in classification problems: state-of-the-art algorithm...Lees meer
New edition of a graduate-level textbook on that focuses on online convex optimization, a machine learning framework that views optimization as a proc...Lees meer
A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in ke...Lees meer
A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction...Lees meer
Using real-world data case studies, this innovative and accessible textbook introduces an actionable framework for conducting trustworthy data science...Lees meer
A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning. The mathematization of cau...Lees meer
An overview of the theory and application of kernel classification methods. Linear classifiers in kernel spaces have emerged as a major topic within t...Lees meer
A substantially revised fourth edition of a comprehensive textbook, including new coverage of recent advances in deep learning and neural networks. Th...Lees meer
Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges ...Lees meer
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industr...Lees meer
A survey of computational methods for understanding, generating, and manipulating human language, which offers a synthesis of classical representation...Lees meer
A comprehensive introduction to Support Vector Machines and related kernel methods. In the 1990s, a new type of learning algorithm was developed, base...Lees meer
Advanced statistical modeling and knowledge representation techniques for a newly emerging area of machine learning and probabilistic reasoning; inclu...Lees meer
An advanced book for researchers and graduate students working in machine learning and statistics who want to learn about deep learning, Bayesian infe...Lees meer
A rigorous and comprehensive textbook covering the major approaches to knowledge graphs, an active and interdisciplinary area within artificial intell...Lees meer
The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificia...Lees meer
A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for m...Lees meer
An introduction to the intellectual foundations and practical utility of the recent work on fairness and machine learning. Fairness and Machine Learni...Lees meer
A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. Today's Web-enabled deluge of el...Lees meer
An accessible introduction and essential reference for an approach to machine learning that creates highly accurate prediction rules by combining many...Lees meer
A hands-on approach to tasks and techniques in data stream mining and real-time analytics, with examples in MOA, a popular freely available open-sourc...Lees meer
A comprehensive introduction and reference guide to the minimum description length (MDL) Principle that is accessible to researchers dealing with indu...Lees meer