Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Neben den klassischen algebraischen Stabilitätskriterien werden zur Unter- suchung der Stabilität von Regelvorgängen häufig die Ortskurvenverfahren be- nutzt, welche aus dem Verlauf der Ortskurve des Frequenzganges F (p) des auf 0 geschnittenen Regelkreises Rückschlüsse auf die Stabilität bzw. Instabilität des Regelvorganges erlauben. Grundlegend für die Kriterien dieser Art ist die Arbeit von NYQUIST [16]. NYQUIST hat darin notwendige und hinreichende Ortskurven- bedingungen für die Stabilität des geschlossenen Regelkreises angegeben. Hier- bei setzte NYQUIST voraus, daß der aufgeschnittene Regelkreis stabil ist, d. h. daß die Polstellen von Fo(p) sämtlich in der linken Halbebene liegen. Kriterien, die auch den Fall eines instabilen aufgeschnittenen Regelkreises ein- schließen, findet man u. a. in den Büchern von CHESTNUT-MAYER [2], PoPow [21 ], SoLODOWNIKOW [24] und den Arbeiten von LEHNIGK [13], DzuNG [4], FREY [5], FöLLINGER [6]. w + Xw I I Fa(p) I I X y + I I Fa(p) -j- I z I Abb. 1 Blockschaltbild eines Regelkreises Für den häufig vorkommenden Fall eines Regelkreises mit dem in Abb. 1 dar- gestellten Blockschaltbild, bei dem zwischen den Frequenzgängen F 0 (p) des aufgeschnittenen Regelkreises, F s (p) der Regelstrecke und FR (p) des Reglers der Zusammenhang Fo(p) =-FR(p) - Fs(p) besteht, liegt nun in der Praxis meist die folgende Fragestellung vor: Zu einer gegebenen, nicht mehr veränderlichen Regelstrecke ist ein Regler so zu bestim- men, daß der Regelkreis optimale Eigenschaften besitzt, also insbesondere stabil ist.