Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Classicalexamples of moreand more oscillatingreal-valued functions on a domain N ?of R are the functions u (x)=sin(nx)with x=(x, ..., x ) or the so-called n 1 1 n n+1 Rademacherfunctionson]0,1[, u (x)=r (x) = sgn(sin(2 x))(seelater3.1.4). n n They may appear as the gradients?v of minimizing sequences (v ) in some n n n?N variationalproblems. Intheseexamples, thefunctionu convergesinsomesenseto n ameasure µ on ? ×R, called Young measure. In Functional Analysis formulation, this is the narrow convergence to µ of the image of the Lebesgue measure on ? by ? ? (?, u (?)). In the disintegrated form (µ ), the parametrized measure µ n ? ? captures the possible scattering of the u around ?. n Curiously if (X ) is a sequence of random variables deriving from indep- n n?N dent ones, the n-th one may appear more and more far from the k ?rst ones as 2 if it was oscillating (think of orthonormal vectors in L which converge weakly to 0). More precisely when the laws L(X ) narrowly converge to some probability n measure, it often happens that for any k and any A in the algebra generated by X, ..., X, the conditional law L(XA) still converges to (see Chapter 9) 1 k n which means 1 C (R) ?(X (?))dP(?) d b n P(A) A R or equivalently, ? denoting the image of P by ? ? (?, X (?)), n X n (1l )d? (1l )d[P? ].