Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
This book delves deeply into the field of variable-fidelity surrogate modeling, examining its application in the optimization of complex multidisciplinary design optimization problems. The text presents a detailed exploration of surrogate modeling techniques, with a focus on variable-fidelity approaches that integrate models of varying accuracy to enhance the efficiency of optimization processes. Covering foundational concepts, the book progresses through diverse modeling strategies, including scaling function-based approaches, sequential techniques, physics-informed neural networks-based and deep transfer learning-based methods. It also addresses critical aspects such as the development of surrogate-assisted optimization algorithms. By adopting a holistic perspective, this book emphasizes the importance of integrating surrogate models with optimization algorithms to tackle real-world multidisciplinary design challenges. The book is designed for graduate students, researchers, and engineers working in areas such as engineering design, optimization, and computational modeling. It is an essential resource for those interested in advancing the field of surrogate modeling and its applications to complex design optimization tasks, providing both theoretical insights and practical guidance.