Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
User modelling in Exploratory Learning Environments (ELEs) is an emerging field with several challenges to be addressed. Due to the freedom given to learners, the amount of information generated is very large, making the modelling process very challenging. Consequently, only relevant information should be used in the user modelling process. This, however, leads to other challenges such as identification of relevant information, finding an optimal knowledge representation and defining an inference mechanism by which this knowledge is used in diagnosing the learner. This research addresses the challenges of user modelling in ELEs by monitoring learners' behaviour and taking into account only relevant actions in the context of an ELE for the domain of mathematical generalisation. An iterative approach was used, in line with the iterative design of the ELE. The modelling mechanism employed a modified version of Case-based Reasoning and was evaluated using pedagogical scenarios and data from simulated and real students. This approach has the advantage of storing only relevant information and allows learner diagnosis during as well as at the end of a task.