Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Transition metal ions in biological systems are of interest in biology, biochemistry, chemistry, medicine, and physics. Scien- tists with rather different viewpoints, employing many methods, have contributed to this area. A concise review of the current state of the field will, to some extent, reflect the special knowledge of the person writing it - in this case application of physical methods to the investigation of metal coordination. x- ray diffraction is one of the most important of these methods, but a useful treatment of X-ray structure analysis would be com- parable in size with and beyond the scope of the monograph. Many results of X-ray diffraction studies are, of course, presented. Electron paramagnetic resonance spectroscopy has played a major part in the rapid advance in knowledge of the electronic struc- tures of transition metal ions in biological systems. More gener- ally, measurements involving light, microwaves, and magnetic fields are capable of producing much new information, and the required instrumentation is available at most research institu- tions. Therefore light absorption and paramagnetic resonance are treated in depth. The principles described in the latter discus- sions are broadly applicable, for example to the promising tech- niques of X-ray spectroscopy (utilizing synchrotron radiation) and lanthanide-perturbed, very high-resolution nuclear magnetic resonance spectroscopy.