Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
In dieser Dissertation werden drei neuartige Generalized FSOD (G-FSOD)-Ansätze vorgestellt, die das Vergessen von zuvor gelernten Klassen beim Lernen neuer Klassen mit begrenzten Daten minimieren. Die ersten beiden Ansätze reduzieren das Vergessen von Basisklassen, wenn diese während des Trainings noch verfügbar sind. Der dritte Ansatz, für Szenarien ohne Basisdaten, nutzt Wissensdestillation, um den Wissenstransfer zu verbessern. In this dissertation, three novel Generalized Few-Shot Object Detection (G-FSOD) approaches are presented to minimize the forgetting of previously learned classes while learning new classes with limited data. The first two approaches reduce the forgetting of base classes if they are still available during training. The third approach, for scenarios without base data, uses knowledge distillation to improve the knowledge transfer.