Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
This monograph intends to give a general survey of the different branches of the geometry of linear displacements which so far have received attention', The material on this new type of differential geometry has grown so rapidly in re cent years that it is impossible, not only to be complete, but even to do justice to the work of the different authors, so that a selection had to be made, We hope, however, that enough territory is covered to enable the reader to understand the present state of the theory in the essential points, The author wishes to thank several mathematicians who have helped hirn with remarks and suggestions; especially Dr. J. A. SCHOUTEN of Delft and Dr. N. HANSEN BALL of Princeton. Cambridge, Mass., October 1933. D. J. STRUIK. Contents. Page Introduction .... . I. Algebra ..... . 5 1. Vectors and tensors in E n 5 2. Densities . . . . 6 3. Measuring vectors . 7 4. Point algebra. . . 8 5. The general manifold X" 9 6. Non-holonomic measuring vectors . 10 7. Pseudotensors ...... . 12 11. Affine connections .... . 13 1. The principle of displacement 13 2. Affine displacement Ln 14 3. Torsion. . . . . . 17 4. WEYL connection . 18 5. Metrical connection 19 6. Curvature. . . 19 7. Integrability 20 8. Some identities 21 9. Non-holonomic systems 22 10. Transformation groups 23 IH. Connections associated with differential equations 24 1. Paths ........ . 24 2. Projective transformations 25 3. THoMAs parameters . . .