Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je cadeautjes zeker op tijd in huis hebben voor de feestdagen? Kom langs in onze winkels en vind het perfecte geschenk!
Afhalen na 1 uur in een winkel met voorraad
Gratis thuislevering in België vanaf € 30
Ruim aanbod met 7 miljoen producten
Je cadeautjes zeker op tijd in huis hebben voor de feestdagen? Kom langs in onze winkels en vind het perfecte geschenk!
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Optimal cerebral blood flow is coordinated by functional hyperemia and cerebral autoregulation. These processes ensure that the metabolic demands of the brain are met at all times. Both in vivo and in vitro studies support a role for astrocytes in the regulation of cerebral blood flow. In this we review the cellular mechanisms contributing to astrocyte-mediated vasodilation and vasoconstriction of parenchymal arterioles. Primarily, we discuss how activity-dependent changes in astrocytic Ca2+ contribute to the release of vasoactive signals involved in neurovascular coupling. Following the rise in astrocytic Ca2+ and phospholipase A2 activation, arachidonic acid is released and metabolized into multiple vasoactive signals (e.g., prostaglandins, epoxyeicosatrienoic acids, and 20-HETE). The level of arteriole tone along with the metabolic conditions of the tissue can alter the action of these signals leading to either vasodilation or vasoconstriction. Moreover, increased Ca2+ also activates large conductance Ca2+-activated K+ channels expressed in astrocytic endfeet processes. Depending on the K+ efflux concentration released, this pathway can also elicit vasodilation or vasoconstriction of parenchymal arterioles. Finally, we conclude by discussing recent divergent in vivo findings which question a role for astrocyte in functional hyperemia.