Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Electrical stimulation via electrodes implanted in close distance to the spinal cord generates various types of lower limb muscle activities in paralyzed people. Depending on the stimulation parameters, the activities range from simple reflexes involving a single synapse to stereotyped, rhythmic flexion-extension movements implying the activation of spinal pattern generators. Here, electrophysiological data were analyzed to describe the simplest rhythmicity that can be produced by the spinal cord, i.e. series of monosynaptic reflexes with alternating amplitudes and reciprocity between antagonistic muscles. It is further elaborated how these patterns evolve from non-patterned series of monosynaptic reflexes. Hypotheses on the underlying mechanisms are then tested by biologically realistic network models. The Leaky Integrate-and-Fire model was extended by realistic time courses of postsynaptic events and implemented as a non-linear recursive algorithm simulating spatially and temporally distributed neuronal effects. The significance of the work is the demonstration that simple rhythmic behaviors can be produced by networks involving interneurons outside the spinal pattern generators.