Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
This self-contained book offers an extensive state-of-the-art exposition of rotational integral geometry, a field that has reached significant maturity over the past four decades. Through a unified description of key results previously scattered across various scientific journals, this book provides a cohesive and thorough account of the subject. Initially, rotational integral geometry was driven by applications in fields such as optical microscopy. Rotational integral geometry has now evolved into an independent mathematical discipline. It contains a wealth of theorems paralleling those in classical kinematic integral geometry for Euclidean spaces, such as the rotational Crofton formulae, rotational slice formulae, and principal rotational formulae. The present book presents these for very general tensor valuations in a convex geometric setting. It also discusses various applications in the biosciences, explained with a mathematical audience in mind. This book is intended for a diverse readership, including specialists in integral geometry, and researchers and graduate students working in integral, convex, and stochastic geometry, as well as geometric measure theory.