• Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten
  1. Boeken
  2. Natuur
  3. Wetenschap
  4. Wiskunde & Statistiek
  5. Risk and Predictive Analytics in Business with R

Risk and Predictive Analytics in Business with R

Ozgur M Araz, David L Olson
€ 160,45
+ 320 punten
Levering 2 à 3 weken
Eenvoudig bestellen
Veilig betalen
Gratis thuislevering vanaf € 30 (via bpost)
Gratis levering in je Standaard Boekhandel

Omschrijving

Supply chain operations face many risks, including political, environmental, and economic. The past five years have seen major challenges, from pandemic, impacts of global warming, wars, and tariff impositions. In this rapidly changing world, risks appear in every aspect of operations. This book presents data mining and analytics tools with R programming as well as a brief presentation of Monte Carlo simulation that can be used to anticipate and manage these risks. RStudio software and R programming language are widely used in data mining. For Monte Carlo simulation applications we cover Crystal Ball software, one of a number of commercially available Monte Carlo simulation tools.

Chapter 1 of this book deals with classification of risks. It includes a typical supply chain example published in academic literature. Chapter 2 gives a brief introduction to R programming. It is not intended to be comprehensive, but sufficient for a user to get started using this free open source and highly popular analytics tool. Chapter 3 discusses risks commonly found in finance, to include basic data mining tools applied to analysis of credit card fraud data. Like the other datasets used in the book, this data comes from the Kaggle.com site, a free site loaded with realistic datasets.

The remainder of the book covers risk analytics tools. Chapter 4 presents R association rule modeling using a supply chain related dataset. Chapter 5 presents Monte Carlo simulation of some supply chain risk situations. Chapter 6 gives both time series and multiple regression prediction models as well as autoregressive integrated moving average (ARIMA; Box-Jenkins) models in SAS and R. Chapter 7 covers classification models demonstrated with credit risk data. Chapter 8 deals with fraud detection and the common problem of modeling imbalanced datasets. Chapter 9 introduces Naïve Bayes modeling with categorical data using an employee attrition dataset.

Features:

  • Overview of predictive analytics presented in an understandable manner
  • Presentation of useful business applications of predictive data mining
  • Coverage of risk management in finance, insurance, and supply chain contexts
  • Presentation of predictive models
  • Demonstration of using these predictive models in R
  • Screenshots enabling readers to develop their own models

The purpose of the book is to present tools useful to analyze risks, especially those faced in supply chain management and finance.

Specificaties

Betrokkenen

Auteur(s):
Uitgeverij:

Inhoud

Aantal bladzijden:
176
Taal:
Engels
Reeks:

Eigenschappen

Productcode (EAN):
9781032912691
Verschijningsdatum:
25/08/2025
Uitvoering:
Hardcover
Formaat:
Genaaid
Afmetingen:
156 mm x 234 mm
Gewicht:
439 g
Standaard Boekhandel

Alleen bij Standaard Boekhandel

+ 320 punten op je klantenkaart van Standaard Boekhandel
CADEAU

Onze must-reads: hét eindejaarsgeschenk

Vul een gat in iemands lectuur
CADEAU
GDABD Must-read
Standaard Boekhandel

Beoordelingen

We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.