Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Bedankt voor het vertrouwen het afgelopen jaar! Om jou te bedanken bieden we GRATIS verzending (in België) aan op alles gedurende de hele maand januari.
Afhalen na 1 uur in een winkel met voorraad
In januari gratis thuislevering in België
Ruim aanbod met 7 miljoen producten
Bedankt voor het vertrouwen het afgelopen jaar! Om jou te bedanken bieden we GRATIS verzending (in België) aan op alles gedurende de hele maand januari.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
In januari gratis thuislevering in België (via bpost)
Gratis levering in je Standaard Boekhandel
Omschrijving
Mean-Risk portfolio optimization method proposes an efficient frontier that consists of portfolios not dominated by any portfolio. Consequently, this method reduces the choice set by excluding inefficient portfolios. Different risk measures offer different efficient frontiers, which can be interpreted as different optimal choice sets. The question is whether these different risk measures lead to significantly different efficient frontiers for the investors, and which risk measure should be used. My purpose is to present a method to assess the effect of the choice set reduction from different Return-Risk models and to answer the question presented earlier. The most important contribution of the paper is the creation of a two-dimensional space "Risk- Aversion - Certainty Equivalence (CE)" as a platform for comparisons. The curves, representing different risk-averse investors and different models, on this space are called "Certainty Equivalence Curves (CEC)". The empirical analysis shows that the Mean-Variance method is very effective in ranking portfolios for exponential utility investors. Therefore, it is not recommended to use more complicated methods such as Mean-CVaR.