Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Bedankt voor het vertrouwen het afgelopen jaar! Om jou te bedanken bieden we GRATIS verzending (in België) aan op alles gedurende de hele maand januari.
Afhalen na 1 uur in een winkel met voorraad
In januari gratis thuislevering in België
Ruim aanbod met 7 miljoen producten
Bedankt voor het vertrouwen het afgelopen jaar! Om jou te bedanken bieden we GRATIS verzending (in België) aan op alles gedurende de hele maand januari.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
In januari gratis thuislevering in België (via bpost)
Gratis levering in je Standaard Boekhandel
Omschrijving
In einem Data Warehouse ist schlechte Datenqualität ein häufig auftretendes Problem. Die Erstellung einer Regel zur Überprüfung von Merkmalsausprägungen ist auch unter Verwendung von Expertenwissen aufgrund der Komplexität zeitaufwendig und fehleranfällig, gerade dann, wenn diese Regel möglichst exakt sein soll. Solche Regeln werden üblicherweise durch reguläre Ausdrucke dargestellt. In dieser Arbeit werden Regular Expression Learning Verfahren betrachtet und evaluiert, sowie ein Vorgehen konzipiert, um einen regulären Ausdruck anhand von Beispieldaten automatisch erstellen zu lassen. Der reguläre Ausdruck hat den Anspruch durch das Training mit den Beispieldaten die jeweilige Struktur eines Merkmals approximiert zu beschreiben, um Vorhersagen bezüglich der Zugehörigkeit für unbekannte Merkmalsausprägungen der jeweiligen Merkmale zu treffen. Abschließend werden die Evaluationsergebnisse zusammengefasst und es erfolgt eine Empfehlung für eine Vorgehensweise mittels einer Konzeption und Modifikation zweier vorgestellten Algorithmen. Zusätzlich erfolgt eine prototypischen Umsetzung dieser Konzeption für einen Algorithmus, sowie exemplarischer Tests anhand dieses Prototyps.