Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je cadeautjes zeker op tijd in huis hebben voor de feestdagen? Kom langs in onze winkels en vind het perfecte geschenk!
Afhalen na 1 uur in een winkel met voorraad
Gratis thuislevering in België vanaf € 30
Ruim aanbod met 7 miljoen producten
Je cadeautjes zeker op tijd in huis hebben voor de feestdagen? Kom langs in onze winkels en vind het perfecte geschenk!
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Utilizando técnicas modernas, como la minería de datos, el modelado estadístico y el aprendizaje automático, los modelos predictivos ayudan a los analistas a realizar previsiones futuras sobre variables de interés como suelen ser ventas, ingresos, gastos, etc. También suelen utilizarse para pronosticar probabilidades de fraude, riesgo, devolución de créditos y siniestro en el seguro. Entre los modelos predictivos más interesantes se encuentran las redes neuronales. MATLAB implementa la herramienta Neural Network Toolbox (Deep Learning Toolbox a partir de la versión 18) especializada en las técnicas de analítica basadas en redes neuronales. Esta caja de herramientas proporciona algoritmos, funciones y aplicaciones para crear, entrenar, visualizar y simular redes neuronales. Puede realizar tareas de clasificación, regresión, agrupación, reducción dimensional, previsión de series temporales y modelado y control de sistemas dinámicos. La caja de herramientas incluye algoritmos de aprendizaje profundo de redes neuronales convolucionales y autocodificadores para tareas de clasificación de imágenes y reconocimient