Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Everywhere one looks, one finds dynamic interacting systems: entities expressing and receiving signals between each other and acting and evolving accordingly over time. In this book, the authors give a new syntax for modeling such systems, describing a mathematical theory of interfaces and the way they connect. The discussion is guided by a rich mathematical structure called the category of polynomial functors. The authors synthesize current knowledge to provide a grounded introduction to the material, starting with set theory and building up to specific cases of category-theoretic concepts such as limits, adjunctions, monoidal products, closures, comonoids, comodules, and bicomodules. The text interleaves rigorous mathematical theory with concrete applications, providing detailed examples illustrated with graphical notation as well as exercises with solutions. Graduate students and scholars from a diverse array of backgrounds will appreciate this common language by which to study interactive systems categorically.