Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
This work shows the results of a robust system developed as an alternative to recognize the quality of alcohol vapor and Liquid Petrol Gas (LPG) heat power in an electric nose. Two methodologies were used to recognize alcohol vapor and LPG patterns. The first approach used a Fuzzy Inference System (FIS) and training algorithms of Artificial Neural Networks (ANN): Backpropagation and Learning Vector Quantization. The second approach consists of develop an LPG heat power recognizing system robust to one-random-sensor-loss. Three systems were used. The first implemented an ANN to recognize data that simulated the failure of a random sensor. This system had 97% of right responses. The second implemented seven ANN s trained with input data subsets, such that six ANN s were trained with a different failure sensor, and the seventh ANN was trained with data of all sensors without failure. This system had 99% of right responses. The third implemented an Ensemble Static Learning Machine with ten parallel ANN s. The results were 97% of right responses. Some ways for hardware implementation of the recognizing system were suggested in DSP and micro-controller pre-built systems.