Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
The work is devoted to the construction of efficient parallel algorithms of the integration step control in for simulation of dynamic objects. To select the optimum step size the paper proposes several parallel algorithms that are based on well-known, specially restructured methods of solving systems of ordinary differential equations. For these purposes, the parallel nested methods, explicit and implicit extrapolation schemes of variable order are used. As a criterion for the selection of the numerical scheme the inequalities which control accuracy and stability are used. When solving stiff problems, this allows at each step to select the optimum in terms of computational cost numerical scheme. Also the new difference block methods with the possibility of adapting the step, addressed at parallel implementation, are proposed. The basic idea, on which the design of block methods was based, is to obtain simultaneous approximations of the exact solution at points forming a block. On the basis of the proposed step size control algorithms test problems are implemented, the numerical solution of which provides the required accuracy with the maximum possible integration step.