Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Parallel computation on cluster architectures has become the most common solution for developing high-performance scientific applications. Message Passing Interface (MPI) is the message-passing library most widely used to provide communications in clusters. Along the I/O phase, the processes frequently access a common data set by issuing a large number of small non-contiguous I/O requests, which might create bottlenecks in the I/O subsystem. These bottlenecks are still higher in commodity clusters, where commercial networks are usually installed. Scalability is also an important issue in cluster systems when many processors are used, which may cause network saturation and still higher latencies. As communication-intensive parallel applications spend a significant amount of their total execution time exchanging data between processes, the former problems may lead to poor performance not only in the I/O subsystem, but also in communication phase. Therefore, we can conclude that it is necessary to develop techniques for improving the performance of both communication and I/O subsystems.