Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
The GAMM Committee for "Efficient Numerical Methods for Partial Differential Equations" organizes seminars and workshops on subjects concerning the algorithmic treatment of partial differential equations. The topics are discretisation methods like the finite element and the boundary element method for various type of applications in structural and fluid mechanics. Particular attention is devoted to the advanced solution methods. The series of such seminars was continued in 1995, January 20-22, with the 11th Kiel-Seminar on the special topic Numerical Treatment of Coupled Systems at the Christian-Albrechts-University of Kiel. The seminar was attended by 100 scientist from 9 countries. 23 lectures were given, including two survey lectures. Different kinds of couplings are considered in this volume. The coupling of different components may occur in the physical model. On the other hand, a coupling of subsystems can be generated by the numerical solution technique. General examples of the latter kind are the domain decomposition (see p. 128) or subspace decomposition (p. 117). The local defect correction method couples different discretizations of the same problem in order to improve the results, although the basic linear system to be solved remains unchanged (p. 47). In general, the aim of the numerical coupling is to make use of (efficient) subsystem solvers (p. 1). The combination of different discretization techniques is mentioned on page 59.