• Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten
  1. Boeken
  2. Non-fictie
  3. Informatica
  4. Computerwetenschappen
  5. Neuronale Netze und Deep Learning kapieren

Neuronale Netze und Deep Learning kapieren

Der einfache Praxiseinstieg mit Beispielen in Python

Andrew W. Trask
Paperback | Duits | mitp Professional
€ 29,95
+ 59 punten
Verwachte beschikbaarheidsdatum onbekend
Eenvoudig bestellen
Veilig betalen
Gratis thuislevering vanaf € 30 (via bpost)
Gratis levering in je Standaard Boekhandel

Omschrijving

  • Von den Grundlagen Neuronaler Netze über Machine Learning bis hin zu Deep-Learning-Algorithmen
  • Anschauliche Diagramme, Anwendungsbeispiele in Python und der Einsatz von NumPy
  • Keine Vorkenntnisse in Machine Learning oder höherer Mathematik erforderlich

Deep Learning muss nicht kompliziert sein. Mit diesem Buch lernst du anhand vieler Beispiele alle Grundlagen, die du brauchst, um Deep-Learning-Algorithmen zu verstehen und anzuwenden. Dafür brauchst du nichts weiter als Schulmathematik und Kenntnisse der Programmiersprache Python. Alle Codebeispiele werden ausführlich erläutert und mathematische Hintergründe anhand von Analogien veranschaulicht.

Der Autor erklärt leicht verständlich, wie Neuronale Netze lernen und wie sie mit Machine-Learning-Verfahren trainiert werden können. Du erfährst, wie du dein erstes Neuronales Netz erstellst und wie es mit Deep-Learning-Algorithmen Bilder erkennen sowie natürliche Sprache verarbeiten und modellieren kann. Hierbei kommen Netze mit mehreren Schichten wie CNNs und RNNs zum Einsatz.

Fokus des Buches ist es, Neuronale Netze zu trainieren, ohne auf vorgefertigte Python-Frameworks zurückzugreifen. So verstehst du Deep Learning von Grund auf und kannst in Zukunft auch komplexe Frameworks erfolgreich für deine Projekte einsetzen.

Aus dem Inhalt:
  • Parametrische und nichtparametrische Modelle
  • Überwachtes und unüberwachtes Lernen
  • Vorhersagen mit mehreren Ein- und Ausgaben
  • Fehler messen und verringern
  • Hot und Cold Learning
  • Batch- und stochastischer Gradientenabstieg
  • Überanpassung vermeiden
  • Generalisierung
  • Dropout-Verfahren
  • Backpropagation und Forward Propagation
  • Bilderkennung
  • Verarbeitung natürlicher Sprache (NLP)
  • Sprachmodellierung
  • Aktivierungsfunktionen
    • Sigmoid-Funktion
    • Tangens hyperbolicus
    • Softmax
  • Convolutional Neural Networks (CNNs)
  • Recurrent Neural Networks (RNNs)
  • Long Short-Term Memory (LSTM)
  • Deep-Learning-Framework erstellen

Specificaties

Betrokkenen

Auteur(s):
Uitgeverij:

Inhoud

Aantal bladzijden:
360
Taal:
Duits
Reeks:

Eigenschappen

Productcode (EAN):
9783747500156
Verschijningsdatum:
29/11/2019
Uitvoering:
Paperback
Afmetingen:
171 mm x 241 mm
Gewicht:
608 g
Standaard Boekhandel

Alleen bij Standaard Boekhandel

+ 59 punten op je klantenkaart van Standaard Boekhandel
E-BOOK ACTIE

Tot meer dan 50% korting

op een selectie e-books
E-BOOK ACTIE
E-bookactie juni
Standaard Boekhandel

Beoordelingen

We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.