Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
The book consists of eight chapters, each focusing on different aspects of multiple integrals and related topics in mathematical analysis.In Chapter 1, multiple integrals are defined and developed. The Jordan measure in n-dimensional unit balls is introduced, along with the definition and criteria for multiple integrals, as well as their properties. Chapter 2 delves into advanced techniques for computing multiple integrals. It introduces the Taylor formula, discusses linear maps on measurable sets, and explores the metric properties of differentiable maps. In Chapter 3, we focus on improper multiple integrals and their properties. The chapter deduces criteria for the integrability of functions of several variables and develops concepts such as improper integrals of nonnegative functions, comparison criteria, and absolute convergence. Chapter 4 investigates the Stieltjes integral and its properties. Topics covered include the differentiation of monotone functions of finite variation and the Helly principle of choice, as well as continuous functions of finite variation. Chapter 5 addresses curvilinear integrals, defining line integrals of both the first and second kinds. It also discusses the independence of line integrals from the path of integration. In Chapter 6, surface integrals of the first and second kinds are introduced. The chapter presents the Gauss-Ostrogradsky theorem and Stokes' formulas, along with advanced practical problems to practice these concepts.