Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
This book is an excellent first encounter with the burgeoning field of real projective manifolds. It gives a comprehensive introduction to the theory of real projective structures on surfaces and their moduli spaces. A central theme is an attractive parameterisation of moduli space discovered by Fock and Goncharov that allows the explicit description or analysis of many key features. These include a natural Poisson structure, the effect of projective duality, holonomy representations and the geometry of ends, to name but a few.This book is written with two kinds of readers in mind: those who would like to learn about real projective surfaces or manifolds, and those who have a passing knowledge thereof but are interested in the geometric underpinnings of Fock and Goncharov's parameterisation of moduli space of certain real projective structures.The material is accessible to any mathematician interested in these topics. It is presented in a self-contained manner with minimal prerequisites. Applications of Fock and Goncharov's parameterisation of moduli space presented in this book include new proofs of results by Teichmüller (1939) concerning hyperbolic structures, by Goldman (1990) concerning closed surfaces, and by Marquis (2010) concerning structures of finite area.Published by Mathematical Society of Japan and distributed by World Scientific Publishing Co. for all markets