Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Our understanding of the basic processes of crystal growth has meanwhile reached the level of maturity at least in the phenomenological concepts. This concerns for example the growth of pure crystals from a low-density nutrient phase like vapor or dilute solution with various aspects of pattern formation like spiral and layer growth, facetting and roughening, and the stability of smooth macroscopic shapes, as well as basic mechanisms of impurity incorporation in melt growth of (in this sense) simple materials like silicon or organic model substances. In parallel the experimental techniques to quantitatively ana- lyze the various growth mechanisms have also reached a high level of reproducibility and precision, giving reliable tests on theoretical predictions. These basic concepts and appli- cations to experiments have been recently reviewed by one of us (A. A. C. ) in "Modern Crystallography III. Crystal Growth" (Springer Series on Solid State Sciences, 1983). It has to be emphasized, however, that for practical applications we are still unable to quantitatively calculate many important parameters like kinetic coefficients from first principles. For mixed systems such as complex oxides, solutions and systems with chemi- cal reactions, our degree of understanding is even lower. As a few examples for present achievements we note that experiments with vapour and molecular beam condensation of alkali halides confirmed the qualitatively predicted mechanisms of screw dislocations and two-dimensional nucleation for layer-growth.