Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Cubature rules are indispensable tools in scientific computing and applied sciences whenever evaluating or discretizing integrals is needed. This monograph is the first comprehensive resource devoted to cubature rules in English since Stroud's classic 1971 book, and the first book about minimal cubature rules. The book explores the subject's theoretical side, which intersects with many branches of mathematics. Minimal cubature rules are intimately connected with common zeros of orthogonal polynomials, which can be described via the polynomial ideals and varieties. Many prominent or practical cubature rules are invariant under a finite group, and some involve symmetric functions and the discrete Fourier transform. Based on state-of-the-art research, the book systematically studies Gauss and minimal cubature rules, and includes a chapter on the practical aspects of construction cubature rules on triangles and simplexes. This comprehensive guide is ideal for researchers and advanced graduate students across the computational and applied mathematics community.